Algebra 2 Notes 1 Flashcards
(1D-N1-1.1) Let a, b ∈ Z. Then a divides b if …
-
(1P-N1-1.2) (i) If a|b and a|c then a|bd + ce, (ii) If a|b and b|c then a|c. (iii) if a, b ̸= 0 and a|b and b|a then a = ±b.
-
(1D-N1-1.3) Factorisation: trivial, composite. Prime, units.
-
(1T-N1-1.4) Division theorem
-
(1D-N2-1.5) Highest Common Factor, Coprime
-
(1T-N2-1.6) Euclid’s Algorithm
-
(1D-N3-1.7) Linear Combinations
-
(1T-N3-1.8) Let a, b be non-zero integers and x an integer. Then x is a linear combination of a and b if and only if hcf(a,b) | x.
-
(1L-N3-1.9) the h-k Lemma’
-
(1P-N3-1.10) Let p be a prime number and a and b be integers. Then p|ab ⇒ p|a or or p|b
-
(1C-N4-1.11) Let p be a prime number and a1, a2, …, an be integers. Then if p divides a1a2…an, then p divides at least one of the ai.
-
(1T-N4-1.12) Unique factorisation (in Z 2014)
-
(1T-N5-1.14) Infinitely Many primes
-
(1D-N6-1.15) Given R be a relation on a set X. Then Reflexive, Symmetric, Transitive
-
(1D-N6-1.16) Equivalence Relation
-