Advanced Identities: Your Keys to Pre-Calc Success Flashcards
1) What to do if you need to find out a sine/cosine/tangent 15 degree angle? What are the 6 equations to do so?
2) Praxis Example: find the sine of 135°!
3) What is the common denominator of the unit circle?
4) What to do if you need to find out the value of sin(π/12)?
1) Use the sum or difference of known angles. So 45-30 degrees.
sin(a + b) = sin a · cos b + cos a · sin b
sin(a – b) = sin a · cos b – cos a · sin b
cos(a + b) = cos a · cos b – sin a · sin b
cos(a – b) = cos a · cos b + sin a · sin b
tan(a+b)= tan a + tan b
____________
1 - tan a * tan b
tan(a-b)= tan a - tan b
____________
1 + tan a * tan b
2)
- Rewrite. P.e. 135° = 90° + 45°
- Use sum formula: sin 90° cos 45° + cos 90° sin 45°
- Unit circle to transform to: 1SR2/2+0SR2/2 -> mind sin table and that the cartesian above is (1,0)
- Simplify to SR2/2
3) 12
4) Same as above: Rewrite (3π/12-2π/12), use formula, transform and simplify.
Find the sum or difference of two angles…
Find the exact value of cos(A + B), given that
cos A = –3/5, with A in quadrant II of the coordinate plane, and sin B = –7/25, with B in quadrant III.
- Choose a formula and substitute given information.
cos(A + B) = (–3/5) · cos B – sin A · (–7/25) - Draw the 4 quadrants and the right triangles in the quadrants (A in two, B in 3). Also mark the length of the two sides you know. Then use Pythagoras to find third. Picture on page 321.
- Use the definition of cosine and sine.
You get cos B = –24/25 and sin A = 4/5. - Put into the formula and simplify.
cos(A + B) = (–3/5) · (–24/25) – (4/5) · (–7/25)
cos(A + B) = 4/5.
Name the double-angle formulas and derivations for sine, cosine, tangent!
if … sin(a + b) = sin a · cos b + cos a · sin b
then … sin(θ+θ) = sin θ · cos θ + cos θ · sin θ
thus … sin(2θ) = 2 sin θ · cos θ (expression above 2x)
if … cos(a + b) = cos a · cos b – sin a · sin b
then … cos(θ+θ) = cos θ · cos θ - sin θ · sin θ
thus … cos(2θ) = cos2 θ - sin2 θ
also possible: cos 2x = 2 cos² x – 1
cos 2x = 1 – 2 sin² x
if … tan(a+b) = tan a + tan b
__________
1 - tan a * tan b
then … tan(θ+θ)= tan θ + tan θ
____________
1 - tan θ * tan θ
thus … tan(2θ)= 2 tan θ
________
1 - tan**2 θ
Name the half-angle formulas for sine, cosine, and tangent.
sin x/2 = +- √1-cos x
____ # nom and denom under SR
2
cos x/2 = +- √1+cos x
____ # nom and denom under SR
2
tan x/2 = 1 - cos x sin x
______ = _____
sin x 1 + cos x
Name the three product-to-sum formulas sine · cosine, cosine · cosine, and sine · sine!
sine · cosine
-> sin a cos b = 1/2[sin(a+b) + sin(a-b)]
cosine · cosine
-> cos a cos b = 1/2[cos(a+b) + cos(a-b)]
sine · sine
-> sin a sin b = 1/2[cos(a-b) - cos(a+b)]
Name the Sum/Difference-to-Product identities!
sin x + sin y = 2sin(x+y)cos(x-y)
__ __ #den also in parenth
2 2
sin x - sin y = 2cos(x+y)sin(x-y)
__ __ #den also in parenth
2 2
cos x + cos y = 2cos(x+y)cos(x-y)
__ __ #den also in parenth
2 2
Name the Power-Reducing Formulas to eliminate exponents
sin**2 x = 1-cos2x
_____
2
cos**2 x = 1+cos2x
_____
2
tan**2 x = 1-cos2x
_____
1+cos2x