Acid-Base + Blood Gases Flashcards
Causes of HAGMA
CATMUDPILES
C - Carbon Monoxide, Cyanide
A - Alcohol, Alcoholic Ketoacidosis
T - Toluene
M - Metformin, Methanol
U - Uraemia
D - Diabetic Ketoacidosis
P - Paraldehyde, Phenformin, Paracetamol, Propylene glycol
I - Iron, Isoniazid
L - Lactic acidosis (any cause)
E - Ethylene glycol
S - Salicylates
Or KULT
K - Ketones
U - Uraemia
L - Lactate
T - Toxins/Toxic alcohols
Causes of Lactic Acidosis
Type A: Imbalanced oxygen supply and demand
Carbon monoxide
Shock
Severe anaemia
Severe hypoxia
Excessive oxygen demand: fever, seizure, exercise, shivering
Type B: Metabolic
“BLACK MIST”
B - Beta-2 agonists
L - Liver failure, renal failure
A - Alcohols
C - Cyanide
K - Ketoacidosis
M - Metformin
I - Inborn errors of metabolism
S - Sepsis
T - Thiamine deficiency
Causes of NAGMA
USED CRAP
U - Ureteroenterostomy
S - Small bowel fistula
E - Extra chloride (NS 0.9% hydration)
D - Diarrhoea
C - Carbonic anhydrase inhibitors (acetozolamide, topiramate)
R - Renal tubular acidosis
A - Adrenal insufficiency
P - Pancreatic fistula
Mechanisms: bicarb loss vs chloride gain
Top cases: diarrhoea, normal saline, rental tubular acidosis
Cases of a low anion gap
Increased cations - Ca, Mg, Li, multiple myeloma
Decreased anions - Dilution, hypoalbuminaemia
Artifactual - Bromism, iodism, propylene glycol, triglycerides
Causes of metabolic alkalosis
CLEVERR
C - Contraction (volume)
L - Licorice, diuretics
E - Endocrine (Hyperaldosteronism, Bartter’s, Cushing’s, Conn’s)
V - Vomiting, NG suction (chloride loss)
E - Excess alkali (antacids, dialysis, milk-alkali syndrome)
R - Refeeding alkalosis
R - Renal bicarb retention (hypochloraemia, hypokalaemia, chronic hypercapnoea)
Usually vomiting or diuretics +/- potassium depletion (kidney retains K+ > H+)
Causes of respiratory acidosis
Acute
Resp vs neuro:
Airway obstruction
Aspiration
Bronchospasm
Pulmonary disease
CNS depression
Muscle weakness
Chronic
Chronic lung disease
Neuromuscular disorders
Obesity
Causes of respiratory alkalosis
CHAMPS
C - CNS disease disease (raised ICP)
H - Hypoxia (altitude, anaemia, VQ mismatch)
A - Anxiety
M - Mechanical hyperventilation
P - Progesterone, pregnancy
S - Sepsis, salicylates (+ toxins, nicotine, xanthines)
Anion gap equation
AG = Na - Cl - HCO3
Normal <12
With K
AG = Na - Cl - HCO3 + K
Normal <16
Correct for hypoalbuminaemia
+2.5 mEq/L for each 10 below 40g/L
Expected PCO2 in metabolic acidosis (Winter’s formula)
Expected pCO2 = 1.5 x HCO3 + 8 (+/- 2)
Lower limit of compensation ~10 mmHg
Expected pCO2 in metabolic alkalosis
Expected pCO2 = 0.7 x HCO3 + 20 (+/- 5)
Upper limit of compensation ~60 mmHg
Expected HCO3 in respiratory acidosis (acute + chronic)
For every 10 mmHg increase in pCO2 should increase HCO3 by:
- 1 mEq/L (acute)
- 4 mEq/L (chronic)
Expected HCO3 in respiratory alkalosis (acute + chronic)
For every 10 mmHg decrease in pCO2 should decrease HCO3 by:
- 2 mEq/L (acute)
- 5 mEq/L (chronic)
Delta gap calculation (metabolic acidosis)
Change in AG - change in bicarb
i.e. = (AG - 12) - (24 - HCO3)
-6 = Mixed high and normal anion gap acidosis
-6 to 6 = Only ahigh anion gap acidosis exists
over 6 = Mixed high anion gap acidosis and metabolic alkalosis
Delta ratio calculation (metabolic acidosis)
Increase in anion gap (AG) divided by decrease in HCO3
i.e. = (AG-12) / (24 - HCO3)
<0.4 NAGMA
0.4 - 0.8 HAGMA+NAGMA
1-2 HAGMA
>2 HAGMA + metabolic alkalosis
Osmolar gap calculation (+ calculated osmolality)
Calculated osmolality = 2[Na] + urea + glucose + (EtOH x 1.25)
Osmolar gap (OG) = measured - calculated osmolality
Normal OG <10
Aa-gradient calculation
PAO2 = (713 x FiO2) - (PCO2 / 0.8)
Room air
Calculated PAO2 = 150 - (PCO2 / 0.8)
Aa gradient = PAO2 - measured PaO2 (ABG)
Normal Aa gradient
* <age/4
* <10 in the young
* <20 in the elderly
* Increased in the supine patient (due to VQ mismatch)
Gradient varies with age and FiO2:
FiO2 0.21 – 7 mmHg in young, 14 mmHg in elderly
FiO2 1.0 – 31 mmHg in young, 56 mmHg in elderly
OR
age/4 + 4 (i.e. age 40, normal Aa gradient <14)
Sodium correction for hyperglycaemia
Corrected NA = measured Na + 0.3 x (glucose - 5.5)
i.e. 3mmol/L Na added for every 10mmol of glucose above 5.5
e.g Na 124, Glu 25.5; corrected Na = 124 + 0.3 * 20 = 130
Interpretation of Aa gradient
Normal A-a gradient
- Alveolar hypoventilation (elevated PACO2)
- Low PiO2 (FiO2 < 0.21 or barometric pressure < 760 mmHg)
Raised A-a gradient
- Diffusion defect (rare)
- V/Q mismatch
- Right-to-Left shunt (intrapulmonary or cardiac)
- Increased O2 extraction (CaO2-CvO2)
Potassium correction for pH
K+ corrected = [K+]measured - 0.6 ([7.4 - pH] / 0.1))