A&P- Final Flashcards

1
Q

Forced Mid-Expiratory flow or FEF 25-75 test

A

A lower FEF 25-75% value (not as a ratio but as an absolute flow rate) suggests obstruction in the smaller airways.

Really bad asthma somewhere between 500-1000mL/s is thought of as a good number

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

If we have a lung that has a smaller than normal inward recoil, what happens to the pleural pressure?

A

Then that would lead to larger lung volumes- so lose elastance in the lungs- the result is higher lung volumes.. And a more positive pleural pressure, less force pulling in (or less negative)..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

CSF pH and CO2

A

CSF pH should be 7.31 (lower than arterial), and CSF PCO2 is 50 mmHg (higher than arterial)

Take care of 85% of blood gas management

CO2 is diffusing into the CSF that is driving up the protons through dissociation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Peripheral Chemoreceptors

A

Two pairs of carotid bodies, just above the bifurcation of the internal/external carotid arteries.. info sent to glossopharyngeal CN 9 to medulla (brainstem)

3-5 aortic bodies sensory info back to brainstem via Vagus nerve (CN X)… peripheral chemoreceptors looking at H+, CO2, and O2.. Capable of sensing all three but mainly looking at the most is for large changes in O2.. So Peripheral is O2 and central chemoreceptors is CO2 and H+..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What PO2 do peripheral chemoreceptors start to ramp up vent..

A

80mmHg and a lot at 60mmHg

if high really wont depress vent

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Perfusion increase is second response to low PaO2.. what happens to BP?

A

large O2 drop, BP will increase.. If we go the opposite direction, decrease in PCO2 or H+.. CO is reduced and BP comes down..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

End Tidal CO2 is 48, how is BP

A

High.. (normal 38-40)..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

If CO2 is low, how is Ca+?

A

CO2 is low, CO is low, BP is Low, then Ca+ is low

binding more to protiens

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Sternocleidomastoid

A

connects with top of sternum and helps keep the ribcage from pulling down during normal breathing.. Anchor point at mastoid process on the skull behind the ear.. Contract during inspiration opposes the ribcage from getting pulled down, stabilizing muscle- helps with regular breathing.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Opening that allows for drainage from the middle ear called

A

pharyngotympanic tube or Estuacian canal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Nasal Vasculature

A

Superficial (inferior) branches coming from external carotid.. Internal branches lay in top of nose via ophthalmic a which is what connects branches to the internal carotid (internal is an even more protected circulation – very hard to stop a bleeder

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

concha

A

inferior: maxilla
middle:ethmoid
superior: ethmoid

Crista Galli - connects falx cerebri

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

tonsils: name 3

A

lingual tonsils.. Under side of tongue

Pharyngeal tonsils at the back of nose..

Palatine tonsils off to side of palate

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Salivary glands

A

One under front of tongue is the sublingual gland (red).. Gleeking.. Submandibular farther back right under mandible (blue).. Parotid is largest.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Trigeminal nerve..

A

CN5 is very large.. Side of head w/ 3 divisions.. V1: very top part (ophthalmic branch- eyes and forehead sensory).. V2: middle maxillary roof of mouth and nose (middle face).. V3: mandibular division. Lower jaw mandible

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Trachea Length:

A

Length is 11-13 cm for a normal adult.. Vast majority is inside thorax.. 2-4 cm is extra-thoracic to connect to the larynx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Ligaments that connect the 20 tracheal rings

A

annular ligaments

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Angle Between the Main Stems:

A

The angle that is formed between the 2 is a combined angle of 70 degrees

The right is about 25 degree curve and the left is a 45 degree angle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

ETT limitations:

A

The narrowest part of upper airway is the cricoid cartilage (neonates).. That is what limits size of ETT tube (if bigger then won’t go in)..

In adults or persons older than 14 then that is the opening in-between the cords (trans glottic space- green line) are most narrow space.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Mt. Everest

A

29,000ft (8400m) at the summit. PB: 250mmHg

0.21(250-47) => PIO2 of 43mmHg

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Diving Pressure:

A

Sea level is 1 atm.. 30 feet under the surface is twice that at 2 atm.. For every 30 feet the pressure increases by a factor of 1 atm..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Volumes Percent of arterial blood

A

In arterial blood 20 mL O2 for / 100mL blood.. So 20 %

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

How many mL’s of O2 will give us a PO2 of 100mmHg

A

PO2 is about 100 when we have 0.3 mLs of O2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

As lung O2 pressures increase.. From 100mg to 1000mmHg we would expect ? mL O2 in the dissolved state..

A

3mL O2

10X increase from normal
linear increase

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

30min at 2 atm will give O2 pressure around ? mmHg

A

1560mmHg. - upper limit of Oxygen poisoning .. O2 causes oxidative, free radical stress

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

O2- Superoxide

A

Can combine with nitric oxide (NO) to form really toxic compound OONO- (peroxynitrite) , destroys DNA, kills cells, and replication, causes cancer, anti-cancer genes don’t work well..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Hydrogen Peroxide:

A

H2O2: free radical or oxidizing compound.. Not good to have excess

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Peroxidase

A

can destroy or make peroxide.. Catalyze interacts w/ hydrogen peroxide.. Acetylcysteine: scavenge free radicals scavenger NAC (liver problems) detox liver..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Fundraiser for Polio

A

“March a Dime”

demylenating disease

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Age Formula:

A

(Age + 10)/4

The older the lower PaO2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

PAO2 = off arterial PaCO2

A

[(PB-PH20)*FIO2] - (PaCO2/R)

or PIO2 – (PaCO2/ R )

normal R is 0.8

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

R =

A

RQ= Respiratory Quotient: the amount of CO2 produced/ O2 used

normal O2 used is 250mL/min and the CO2 produced is about 225mL/min => 0.8

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

RQ with just fats

A

0.7

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

RQ with just carbs

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Fats for ATP is ? CO2 production

A

Less

CO2 gets used of by formation of water with the metabolism of fats.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

If burning carbs

A

If burning carbs, being combined with carbons without excess H+ being produced..

Fats release H+ (somehow form water with O2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

RQ for proteins

A

0.8

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

respiratory exchange ratio (RER)

A

Measuring gases coming off patient for RQ referred to as respiratory exchange ratio (RER) is actual measurement of gas going in and out of patient. Same thing just different term.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

Should be about 400mL of O2 in between breaths in the lungs –

A

(104/760) x 3000mL.. Close to a 2 min supply of oxygen .. We burn 250mL O2/min.. No big deal if don’t take a breath for 2 min..

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

If move our lung volume down to 1L-paralytics

A

that means we only have 130mL of oxygen (104/760) x 1000mL => 136.84 … which is less than 1 min of O2 reserve

41
Q

High CO2 then ?

A

increase in BP and CO

42
Q

Normal arterial pH

A

7.4

43
Q

Normal Venous pH

A

7.35

44
Q

What is the proton concentration dissolved in arterial blood

A

0.00004 mEq/L

45
Q

H+ concentration vs Na+ concentration

A

Na+ is 142 mEq/L so H+ concentration is 3.5 million times less then Na+ concentration in the blood

46
Q

ammonia

A

NH3 buffer - not extracellular, renal tubular

47
Q

Ammonium

A

NH4+ buffered the H+ ion, renal tubular

48
Q

KOH

A

alkaline metal, lithium

Strong bases

49
Q

pH is a logarithmic change in the concentration of H+

A

Each 1 of pH unit change the H+ concentration changes by a factor of ten, pH goes down then H+ increase by factor of 10

concentration in mmol/L

50
Q

pK

A

the neg log of the dissociative constant for a particular acid/base

51
Q

ASA

A

Acetylsalicylic Acid (metabolic acidosis)

52
Q

pK of HCO3-

A

6.0
main extracellular buffer

53
Q

HPO4-

A

Phosphate compound.. good buffer inside cells, turn things on or off, phosphorylation/dephosph things the cell does to control activity- urinary buffer as well

54
Q

Lowest urinary pH

A

4.5

body makes 1mL urine/min

55
Q

Other Chemical Buffers:

A

Larger proteins are also buffers bc of the neg charges within them.. (fastest, works in microseconds- chemical buffers)

second fast- resp
third - renal

56
Q

Normal bicarb

A

24 mmol/L

book said 20-24 was within normal

57
Q

Compensation:

A

Respiratory will never fully correct metabolic acidosis

but kidneys can do a pretty good job of mitigating chronic resp acidosis like seen with COPD.

Resp can correct at best 50-75% of the variance in the pH of the problem.. Kidneys can get it closer, very powerful.

58
Q

Hemorrhage

A

If missing proteins (hemorrhage) not as much buffering capacity w/ low Hb

as we loose blood (Hb) the bicarb level will rise to offset the loss of Hb buffering capacity to maintain a neutral pH as best as possible.

59
Q

Chronic Resp Acidosis

A

pH low- normal
PCO2 high
bicarb: high- compensating

60
Q

Acute Resp Acidosis

A

pH: Low
PCO2: high
bicarb: normal range 22-26- no time to compensate

61
Q

Acute resp alkalosis

A

pH: High
PCO2: Low
bicarb: normal - low

cannot really correct, panic attack, at some point pass out from constricting blood flow to brain

62
Q

Chronic Resp Alkalosis:

A

pH: high-normal
CO2: Low - not as low as acute
bicarb: low- compensating

63
Q

Metabolic Acidosis

A

pH: low
PCO2: Low- compensating
Bicarb: Low

lungs good compensator

64
Q

Metabolic Alkalosis

A

pH: high
PCO2: high- compensating
Bicarb: high

too much tums

Resp compensation for alkalosis is much less because hypoxemia trigger breathing

65
Q

Accessory Muscles for breathing

A

Below C5 control the accessory muscles- (phrenic is C3-C5).. Above C3 you remove all motor output for breathing- accessory muscles (resp acidosis)

66
Q

Resp Alkalosis

A

Overdose with aspirin (Salicylates) stimulates breathing

progesterone

over ventilating..

everything else resp acidosis.. fucking up gas exchange or output controllers, obstructions

67
Q

Methanol

A

Metabolic acidosis
converts into formic acid

68
Q

ASA

A

note that this can cause metabolic acidosis as well.. so look at labs

69
Q

Pancreatic fistula

A

metabolic acidosis
cannot change that pH 2 stomach acid

70
Q

Intestines

A

Large intestine > alkaline than small

71
Q

Metabolic alkalosis

A

vomit
diuretic therapy
steroids-
mineral-corticoids (so aldosterone)- creates too much ANG 2
Cortisol looks like aldosterone -> so can stimulate the ANG-2 receptor

72
Q

Ang 2

A

increase levels: lose H+ (alkalotic)
decrease levels: hoDL H+ (acidotic)

73
Q

Diuretics

A

distal tubule
■ The more Na+ that H+/Na+ exchanger sees, the more H+ they exchange. (secrete)

metabolic alkalosis

exacerbated by feedback mechanism of increasing ANG II: and reabsorbing more HCO3- and loosing more H+

74
Q

Intercalated Cells- manage acid/base in distal tubule

A

A-cell: acid (if you are acidotic- how I remember) - reabsorb bicarb
B-cell: base (if your a basic bitch) - secrete bicarb

75
Q

Normal chloride

A

108

normal Gap = 12

76
Q

Pec Minor

A

Attached to Scapula and shoulder bone, keeps ribcage from pulling down

77
Q

Serratus Anterior

A

wrap around the front side of ribcage and pull the chest outwards on inspiration (makes chest a larger cavity),

Tucked behind pec minor

78
Q

Connection between the superior and inferior laryngeal n.

A

Galen’s anastomosis

79
Q

Pharyngeal Constrictors

A

Superior Pharyngeal constrictors: S1-S4 (suprahyoid)
Middle: M1 & 2 (M1 looks to be suprahyoid)
Inferior: I1 and I2 (infrahyoid)

80
Q

Diagastric Anterior/posterior Belly

A

central tendon called intermediate tendon (separates bellies), goes through a connective tissue sling on the hyoid bone..

Posterior: connected to mastoid process.

Anterior: connected to mandible

81
Q

Stylohyoid Muscle

A

Connected to the styloid process and hyoid bone

82
Q

Mylohyoid

A

it extends from the top of the hyoid bone to the floor of the mouth. (makes up the muscular floor of the mouth)
connecting hyoid bone and mandible

83
Q

Geniohyoid

A

Sitting ontop the mylohoid, running different orientation

Both are located on the floor of your mouth and attaches to the hyoid bone and the jaw

if any muscles contract the larynx moves up

84
Q

Omohyoid (infrahyoid muscle)

A

Connects hyoid bone to shoulder, has central/intermediate tendon as well looped over on rib 1

Superior Belly
Inferior Belly

85
Q

Sternohyoid m.

A

6 (sternohyoid m.)

Connects top sternum with hyoid bone

86
Q

SternoThyroid

A

7

connects sternum and throid cartilage

shorter than sternohyoid

87
Q

Thyrohoid m.

A

Connects thyroid to hyoid bone

separate m. from the sternothyroid

88
Q

hyoid bone horns

A

2 sets, greater and lesser horns

89
Q

Neutrophil Elastase

A

is inhibited by alpha1 antitrypsin (protease).. Neutrophil Elastase - will break down elastin molecules and lead to emphysema

90
Q

Chronic Infection

A

Lungs get smaller if don’t clear crap out of lungs, lose alveoli (look emphysematous at some point)

91
Q

pneumonia vs atelectasis (1 lung) blood gas

A

Pneumonia 1/2: 97%, 1/2: 60% => 78%.. no HPV, shunted blood (larger barrier to diffuse)

Atelectasis: 5/6: 97%, 1/6: 60% => 91%.. HPV.. can just be a lobe

Pneumonia > problem

92
Q

Irritant receptor

A

Vagus Nerve CN 10

93
Q

J receptor

A

juxtaposition to capillaries
located in alveoli- too much blood in lungs (heart failure or pneumonia).. doesn’t do shit, just makes you feel like it.

94
Q

Pulmonary stretch receptors

A

Once Vt hits 1.5 - 2L of air they kick in and stop inspiration.

95
Q

● Cheyne-Stokes breathing

A

Cheyne-Stokes breathing is a type of abnormal breathing pattern characterized by cyclical changes in breathing rate and depth. It usually involves periods of gradual increases in deep breathing followed by periods of apnea (no breathing). 40-60 second cycling time.. This pattern can arise from two main situations:

Delayed Oxygen Delivery to the Brainstem: If oxygenated blood takes longer than usual to reach the brainstem due to a cardiovascular issue (like a heart attack or severe blood loss), the brainstem’s response to the blood oxygen levels is delayed. This results in prolonged activation of the breathing drive, leading to abnormal breathing patterns as the brainstem continues to adjust to outdated blood gas levels.

Brain Damage: Conditions like severe head injuries or the effects of a heart attack can directly damage the brain areas responsible for controlling breathing. This damage can disrupt the normal breathing regulation, leading to the irregular breathing patterns seen in Cheyne-Stokes respiration.

In essence, Cheyne-Stokes breathing reflects issues with either the delivery of oxygen to the brainstem or direct damage to the neural centers that regulate breathing. This results in a distorted respiratory drive, causing the typical cyclic breathing pattern of deep breaths followed by periods of apnea.

96
Q

Airflow when paralyzed and supine

A

Going to go more anterior.. wider gradient.. More neg anterior and more positive posterior gradient, and really low lung volume, not going to get good V/Q ratio (similar to low breathing at RV scenario)..

PEEP to fix

97
Q

Last PFT: Body Plethysmography

A

Boyles law - P1V1 = P2V2
best at estimating trapped gas

98
Q
A