7. Trigonometric Modelling Flashcards
sin(A+B)
sinA cosB + cosA sinB
sin(A-B)
sinA cosB - cosA sinB
cos(A+B)
cosA cosB - sinA sinB
cos(A-B)
cosA cosB + sinA sinB
tan(A+B)
tanA + tanB
———————
1 - tanA tanB
tan(A-B)
tanA - tanB
———————
1 + tanA tanB
Proving cos(-B)
Substitute B = -B into cos(A+B)
Proving tan(A+B)
Write as sin(A+B)/cos(A+B) and divide numerator and denominator by cosA cosB
Using the addition formulae to show sin/cos/tan x = …
Use 0,30,45,60 or 90 in the addition formulae
sin2A
2sinAcosA
cos2A
cos^2(A) - sin^2(A)
2cos^2(A) - 1
1 - 2sin^2(A)
tan2A
1-tan^2(A)
Double angle formulae derivation
Substitute A = B into the addition formulae
b sinx + c cosx to R sin/cos(x+a)
- Expand the RHS using the addition formulae
- Set the coefficients of the LHS and from your expansion equal
- Square Rsina and Rcosa and root the sum for R
- Use tan a = Rsina/Rcosa to find a
- Substitute into the formula
Maximising and minimising with R formulae
The maximum is R, the minimum -T
Find what x must be so the expression in the bracket equals 1 or -1 depending on what is needed