5. Viscous Layers Flashcards
Navier-Stokes Equations in 2D
u
ρDu/Dt = -∂p/∂x + μ∇²u
Navier-Stokes Equations in 2D
w
ρDw/Dt = -∂p/∂z + μ∇²w - ρg
Mass Conservation in 2D
u and w
∂u/∂x + ∂w/∂z = 0
Viscous Layers
Assumption 1 - Length Scales
x~L and z~H
-and
H<
Thin Layer Reynold’s Number
Re ~ Inertia / Viscous
~ [ρDu/Dt]/[μ∂²u/∂z²]
~ [ρU²/L][μU/H²]
Inertia»_space; Viscous
-gives the shallow water equations
Viscous»_space; Inertia
-viscous thin layer equations
Viscous Layers
Assumption 2 - Reynold’s Number
Re «_space;1
- in the w Navier-Stokes equation inertia is negligible
- and viscous terms are negligible in comparison to pressure
- so the equation reduces to the equation for hydrostatic pressure
The Lubrication Equations
0 = -∂p/∂x + μ∂²u/∂z²
0 = -∂p/∂z - ρg
∂u/∂x + ∂w/∂z = 0
Viscous Layer Boundary Conditions
p=po at z=h
μ∂u/∂z = 0 at z=h
u=0 at z=0
Viscous Layer
Velocity Field Derivatino
- start with hydrostatic pressure
- sub in to the first lubrication equation
- integrate with respect to z, remember constant of integration
- impose boundary condition u=0 at z=0
- rearrange for u
Viscous Layer
Velocity Field Equation
u = ρg/2μ ∂h/∂x (z²-2hz)
Viscous Layer
Non-Linear Diffusion Equation Derivation
-incompressible and 2D so: ∂u/∂x + ∂w/∂z = 0 -depth integrate from 0 to h -apply the kinematic boundary condition at the free surface: w=Dh/Dt at z=h(x,t) -sub in u -rearrange
Viscous Layer
Non-Linear Diffusion Equation
∂h/∂t = ρg/3μ ∂/∂x[h³ ∂h/∂x]
Viscous Layer
Non-Linear Diffusion Equation in Terms of q
∂h/∂t = -∂q/∂x