5. Sylow's Theorem Flashcards
1
Q
Sylow’s First Theorem
A
Let p be a prime number. Let G be a finite group of order pam where a≥1 and m∈N such that p∤ m. Then G contains a subgroup of order pr for each r ≤ a.
2
Q
When are Sylow p-subgroups always conjugate.
A
Let p be a prime number. Let G be a finite group such that p | |G|
3
Q
State sylows 3rd theorem about p-subgroups
A
Let p be a prime number. Let G be a finite group of order pam
where a ≥ 1 and m ∈ N such that p does not divide m. Let np be
the number of Sylow p-subgroups of G. Then np∣∣m and np ≡ 1 modp