4. Gaussian models Flashcards
<b>Introduction</b>
Basics
- MVN def
- Mahalanobis distance in the MVN
- eigendecomposition of covariance matrix
- How eigenvectors, eigenvalues, and mu affect the countours of equal probability density of a Gaussian
p. 99
<b>Introduction</b>
MLE for an MVN
p. 101
<b>Gaussian discriminant analysis</b>
- class conditional density in the GDA
- when GDA is equivalent do naive Bayes?
- why GDA can be thought of as a nearest centroids classifier?
- the formula to classify a new test vector in GDA assuming a uniform prior.
p. 103
<b>Gaussian discriminant analysis</b>
Quadratic discriminant analysis (QDA)
- posterior over class labels in QDA
p. 104
<b>Gaussian discriminant analysis</b> Linar discriminant analysis (LDA) - LDA as a special case of QDA - LDA and softmax function - Softmax and Boltzmann distribution
p. 105
<b>Gaussian discriminant analysis</b> Two-class LDA
p. 106
<b>Gaussian discriminant analysis</b>
MLE for discriminant analysis
p. 108
<b>Gaussian discriminant analysis</b>
Strategies for preventing overfitting
p. 108
<b>Gaussian discriminant analysis</b>
Regularized LDA
p. 109
<b>Gaussian discriminant analysis</b>
Diagonal LDA
p. 110
<b>Inference in jointly Gaussian distributions</b>
p. 112