3.2 Determinants Flashcards
If the columns of A are _______________ , then _________
linearly dependent
detA=0
det( I ) = ?
0
det(AB) = ?
det(A)det(B)
If A is _______ then AA(^-1)=1 then det(AA(^-1)) = ?
1/det(A)
If A is a 2x2 matrix and you assume A is invertible (ad-bc=!0) then_________________
det(A)=ad-bc
elementary matrix (Eij)
the n x n square matrix with 1’s down the diagonal and eij=1
AEij corresponds to a ____________
column operation
EijA corresponds to a ____________
row operation
det(AEij) = ? det(EijA) = ?
det(A)
If A is an n x n matrix; c in R; then det(cA) = ?
c(^n)det(A)
Row(or column) switched; ________________
change the sign of the determinant
If a column (or row) has ____________ then _____________
a single nonzero entry
the matrix can be collapsed