3.) Microneedles Flashcards
What are the advantages of microneedle drug delivery (compared to conventional hypodermic needles used IM/SC)?
- Painless
- Ease of use by patients
- Safe needle disposal (no need for sharps)
- Eliminate spread of pathogens due to re-use of needles (decreasing HIV/Hep related incidents)
- Good for drugs unsuitable for PO delivery due to poor PK
How do microneedles achieve painless delivery of drugs?
- MNs penentrate the stratum corneum (top layer of the epidermis) and into the viable epidermis
- Thus avoiding contact with nerve fibres and blood vessels residing in the Dermis (dermal layer)
»> Avoid nerves = avoid pain
What are the PK benefits associated with MNs?
- Higher bioavailability (avoid first-pass)
- Faster absorption
»> Higher peak serum levels achieved compared with hypodermic needles, whilst also achieved earlier than S/C
What are the main types of MNs?
- Solid MNs (silicon or polymer)
- Hollow MNs
Describe the fabrication method of silicon solid MNs.
Via photolithography:
- Silicon wafer base material is coated with silicon dioxide and silicon nitride (oxide + nitride deposition)
- Photoresist layer is spun on top of nitride layer
- UV exposure w/photomask - which blocks UV light exposure to specific areas of the photoresist layer
- Excess (areas exposed to UV) are washed away with developer
- Oxide and nitride layers are removed with Reactive Ion Etching (RIE - bombard of high energy ions remove layers exposed to UV)
- Photoresist layer is then removed with another chemical/developer
- Potassium hydroxide (KOH) used for etching, removing silicon away from silicon substrate
»> Resultant solid MN array
Why were the first MNs manufactured years after the first patent was filed?
- 1976 patent OG
- Lack of manufacturing tools
- First paper demonstrating successful MNs in 1998
»> Photolithography (technique used in semi-conductors in microelectronics, circuit boards etc.) was the breakthrough to allow microfabrication
How does the fabrication process for polymer solid MNs differ from silicon solid MNs?
- Photolithography initial steps almost identical (though only one oxide layer instead of two)
- Once etching has been completed to leave silicon mould, an additional MICRO MOULDING process is carried out:
1) Omnicoat: spun on to separate polymer from silicon after moulding
2) UV curable polymer melt/moltenmonomer is spun on (poured into mould)
3) Cure with UV: solidifying monomer/polymer, similarly using photomask to choose areas to cure
4) Excess monomer/polymer removed (areas not exposed to UV), separate polymer MN mould from silicon
What are the two different methods of fabricating hollow MNs?
- Reactive Ion Etching (RIE)
- Sacrificial micromoulding + selective electrodeposition
How is RIE used to fabricate hollow MNs?
- Silicon wafer raw starting material
- RIE targeted down middle to create tunnel - forming tube-like structure
- Less intense RIE used to then etch away excess on sides of tunnel, forming thin walled, hollow MN
Describe how sacrificial micromoulding + selective electrodeposition are used to fabricate hollow MNs?
1) Fabrication of master structure with a laser ablated cavity (makes tiny slot)
2) Use master structure to form micromould (w/protruding pillar that will form lumen exit hole)
3) Make replica using micromould (pour raw material into micromould)
4) Sputtering of gold seed layer onto the replica
5) Electrodeposition of metal everywhere except cavity, followed by dissolving of sacrificial base material to release metal hollow MN
What are the 4 major delivery modes using MNs?
1) Solid MNs
2) Drug coated MNs
3) Drug encapsulated MNs
4) Hollow MNs for drug delivery through lumen/bore
Describe how drug delivery is achieved with Solid MNs.
Effectively a pre-treatment of skin, followed by patch:
- MN is applied to skin, and removed to form micron-scale pores in skin surface (increase diffusion of drug)
- Patch/other drug formulation then applied to the skin for slow diffusion of drug through pores and into the body
What materials are used to make Solid MNs? (skin pre-treatment)
- Silicon
- Metal
- Polymer
- Ceramic
Describe how drug delivery is achieved with Drug coated MNs.
Still a solid MN, but one that is coated with a thin layer on its surface as a carrier to load drugs (e.g. poison coated dart vibes)
- MN is applied/inserted as before, but then is kept applied for specific duration of time
- Drug dissolution in water of skin
What are the 5 considerations for the processes of coating drugs onto MNs?
Dipping/spraying are the most common methods, with the following considerations:
1) Controlled wetting and spreading of drug solution on MNs (homologous layer)
2) Drug should be water-soluble for skin dissolution
3) Adhesion between dried drug coating and MN should be enough during insertion into skin
4) Coating excipients and solvents should be safe
5) Coating process is compatible with drug (to no degrade/damage the drug e.g. high temp, UV exposure)