3. Basic Results about R^n Flashcards
1
Q
Proposition 3.7
Uniqueness of Limits
A
2
Q
Proposition 3.8
Componentwise convergence
Proof
A
3
Q
Lemma 3.15
(x_j) -> x => …
A
4
Q
Proposition 3.14
Convergent sequences are bounded.
A
5
Q
Proposition 3.17
Completeness of R^n
A
6
Q
Theorem 3.18
Bolzano-Weierstrass for bounded sequences of vectors.
A
7
Q
Definition 3.20
Sequential continuity
A
8
Q
Definition 3.22
Continuous limit
A
9
Q
Definition 3.23
Separately continuous
A
10
Q
Exercise 3.5
Continuity => …
A
11
Q
Exercise 3.4
\epsilon-\delta continuity equiv.
A
12
Q
Propositon 3.29
f : U -> R^k is continious at p \in U iff.
A
13
Q
Lemma 3.31
R^(n+l) = R^n (+) R^l = {…}.
Denote projections. then…
A
14
Q
Proposition 3.32
E \subset R, a \in R and g : E -> R, define projections….
A
15
Q
Example of continuous rational functions (sort of)
A