ⓉⓄⓅⒾⒸ 3 Flashcards

1
Q

Amplitude

A

– the distance from the equilibrium position to the maximum displacement

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Wavelength

A

– the distance between a point on one wave and the same point on the next wave

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Frequency

A

– the number of waves that pass a single point per second

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Speed

A

– the distance travelled by a wave each second

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Waves

A

Waves transfer energy without transferring matter; particles oscillate about a fixed point.
● Speed is related to frequency and wavelength
by: 𝒔𝒑𝒆𝒆𝒅 = 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 × 𝒘𝒂𝒗𝒆𝒍𝒆𝒏𝒈𝒕𝒉 𝒗 = 𝒇�

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

types of waves

A

● Transverse waves
○ Has peaks and troughs
○ Vibrations are at right angles to the direction of
travel
○ An example is light
● Longitudinal waves
○ Consists of compressions (particles pushed together) and rarefactions
(particles moved apart)
○ Vibrations are in the same direction as the direction of travel
○ An example is sound

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

wavefront

A

is a surface containing points affected in the same way by a wave at a given time such
as crests or troughs.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Reflection

A

● Waves reflect off smooth, plane surfaces rather than
getting absorbed
○ Angle of incidence = angle of reflection
● Rough surfaces scatter the light in all directions, so they
appear matte and unreflective
● Frequency, wavelength, and speed are all unchanged

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Refraction

A

● The speed of a wave changes when it enters a new medium
● If the wave enters a more optically dense medium, its speed
decreases and it bends towards the normal
● If the wave enters a less optically dense medium, its speed
increases and it bends away from the normal
● In all cases, the frequency stays the same but the wavelength
changes (decreases when traveling into optically dense and increases traveling through optically less dense material)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

diffraction

A

● Waves spread out when they go around the sides of
an obstacle or through a gap
● The narrower the gap or the greater the
wavelength, the more the diffraction
● Frequency, wavelength, and speed are all unchanged

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Light

Reflection

A

● When light is reflected off a plane mirror, it forms an
image with these characteristics:
○ Upright
○ Same distance from the mirror as the object
○ Same size
○ Virtual

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Light Refraction

A

● Refraction can be shown when light is passed through a
glass slab at an angle to its normal
● When light enters a more optically dense medium, the
angle of incidence (the angle between the incident ray
and the normal) is greater than the angle of refraction
(the angle between the refracted ray and the normal).
The opposite is true when light enters a less optically
dense medium

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

refraction, reflection and critical angle equations

A

refraction: ratio between the speed of light
in a vacuum and the speed of light in the medium:𝑛 =
𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚/
𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑢m or sin(i) over sin(r)
reflection: incidence = reflection
Critical angle:𝑛 =
1/𝑠𝑖𝑛 C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

total internal reflection

A

● At a certain angle of incidence called the critical angle, the light
will travel along the boundary between the two media.
● Total internal reflection occurs when the angle of incidence is
greater than the critical angle and the light reflects back into the
medium.
● For total internal reflection to occur, the light must also be
travelling from a more optically dense medium into a less
optically dense medium

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Optical fibres:

A
● An optical fibre is a long thin rod
of glass surrounded by cladding
which uses total internal
reflection to transfer information
by light, even when bent.
● Extensive use in medicine
(endoscopes, inside-body flexible
cameras) and communications
(high speed data transfer).
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Converging lens:

A

● A converging lens is a transparent block which brings light rays together at a point called
the principal focus by utilising refraction.
● The image formed by a converging lens can be either real or virtual.

17
Q

focal lengh

A

● The focal length is the distance between the centre of the lens and the principal focus.

18
Q

real image converging lens

A

● Real images are formed when the distance of the object from the centre of the
lens is greater than the focal length. They are images where light actually
converges to a position and can be projected onto a screen.

19
Q

virtual image converging lens

A

○ Virtual images are formed when the distance of the object from the centre of the lens is smaller than the focal length. They are images where light only
appears to have converged and they cannot be projected onto a screen.

20
Q

Dispersion of light

A

When white light is passed through a glass prism, it splits
up into its constituent colours. This happens because the
different colours travel at different speeds in the glass, so
they refract by different amounts.
● The seven colours in order of decreasing
wavelength are red, orange, yellow, green, blue,
indigo and violet (ROYGBIV).
● The greater the wavelength, the slower the speed
in glass and the greater the refractive index.

21
Q

monochromatic

A

Light of a single frequency

22
Q

Properties of electromagnetic waves:

A
● Transverse waves
● Do not need a medium
● All electromagnetic waves travel with the same high speed of 3.0 x 108 ms-1
in a vacuum
and approximately the same speed in air.
23
Q

Uses of electromagnetic waves: radio waves, microwaves and infrared waves

A

● Radio waves are used for radio and television communications. They have a long
wavelength and are reflected by the ionosphere.
● Microwaves are used for satellite communication and in microwave oven. They pass
through the ionosphere and penetrate deep into food.
● Infrared radiation is used in remote controllers and infrared cameras.

24
Q

Uses of electromagnetic waves: visible light, ultraviolet light, x-rays and gamma radiation

A

● Visible light is used in fibre optics.
● Ultraviolet light is used in tanning beds.
● X-rays are used in medical imaging and in security as they can penetrate material easily.
● Gamma radiation is used in medical treatment due to its high energy.

25
Q

Hazards:

A

● Too much exposure to ultraviolet light skin increases the risk of skin cancer.
○ Sun cream prevents over-exposure in summer.
● X-rays and gamma rays are ionising radiation that can cause mutations leading to cancer.
○ Exposure to these kinds of radiation should be minimised.
● Microwaves can cause internal heating of body tissues.
● Infrared radiation can cause skin burns.

26
Q

sound waves

A

are longitudinal waves created by vibrating sources. A medium is needed to transmit
sound waves (such as air).
● The greater the amplitude of a sound wave, the louder it is.
● The greater the frequency of a sound wave, the higher its pitch.

27
Q

audible range of humans

A

healthy human ear is 20 Hz to 20000 Hz. Ultrasound is

sound with a frequency greater than 20000 Hz:

28
Q

ultrasound

A

● When ultrasound reaches a boundary between two media it is partially reflected back. The
remainder of the waves continue to pass through.
● A transceiver can emit ultrasound and record the reflected waves to find the distance of
things below the surface.
● Ultrasound is used for things such as SONAR and for medical imaging without using
ionising radiation.