2 - discrete random variables Flashcards
expectation (E(X))
sum of xi pi
variation (X)
E(x^2) - (E(x))^2
sum of xi^2 pi - (sum of xi pi)^2
linear coding
if Y = aX+ b
E(Y) = aE(X) + b
Var(Y) = a^2Var(X)
sd(Y) = a(sd(X))
discrete uniform distribution
P(X = x)
X ∼U(n)
P(X = x) = 1/n
discrete uniform distribution
a fixed no. n = spaced numerical outcomes with constant and = prob of them occurring
if X ∼ U (n) the E(X) and the Var(X) are…
E(X) = n+1 /2
var(X) n^2 -1 /12
binomial distribution E(X) and Var(X)…
if X ∼ B(n, p)
E(X) = np
Var(X) == np(1-p)
geometric distribution conditions
- there are trials where all outcomes can be success of failure
- independent trials
- p is constant
- no upper limit to the no. trials
geometric distribution P(X = x)
if X ∼ Geo(p)
P(X = x) = p(1-p) ^x-1
geometric distribution P(X > x)
(1-p) ^x
geometric distribution E(X) and Var(X)…
if X ∼ Geo(p)
E(X) = 1/p
Var(X) = (1-p) /p^2