Κεφαλαιο 2 Flashcards

1
Q

Γιατί ο μηχανισμός του DNA ονομάζεται ημισυντηρητικός?

A

Η συμπληρωματικότητα των βάσεων του DNA ώθησε τους Watson και Crick, όταν περιέγραψαν το μοντέλο τους για τη δομή του γενετικού υλικού το 1953, να γράψουν: «είναι φανερό ότι το ειδικό ζευγάρωμα που έχουμε υποθέσει ότι δημιουργείται μεταξύ των βάσεων του DNA προτείνει έναν απλό μηχανισμό αντιγραφής του γενετικού υλικού». Οι Watson και Crick φαντάστηκαν μια διπλή έλικα η οποία ξετυλίγεται και κάθε αλυσίδα λειτουργεί σαν καλούπι για τη σύνθεση μιας νέας συμπληρωματικής αλυσίδας. Έτσι τα δύο θυγατρικά μόρια που προκύπτουν είναι πανομοιότυπα με το μητρικό και καθένα αποτελείται από μία παλιά και μία καινούρια αλυσίδα. Ο μηχανισμός αυτός ονομάστηκεημισυντηρητικό

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Πώς επιτυγχάνεται η εκπληκτική ακρίβεια και μεγάλη ταχύτητα της αντιγραφής του DNA?

A

Η διαδικασία της αντιγραφής, όπως υποδηλώνεται από τη δομή της διπλής έλικας και τον ημισυντηρητικό μηχανισμό, φαίνεται απλή. Όμως, ύστερα από πολύχρονη ερευνητική μελέτη, διαπιστώθηκε ότι η διαδικασία στην πραγματικότητα είναι ιδιαίτερα πολύπλοκη. Τα κύτταρα διαθέτουν ένα σημαντικό «οπλοστάσιο» εξειδικευμένων ενζύμων και άλλων πρωτεϊνών που λειτουργούν ταυτόχρονα και καταλύουν τις χημικές αντιδράσεις της αντιγραφής με μεγάλη ταχύτητα και με εκπληκτική ακρίβεια.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Για ποιο λόγο ο μηχανισμός της αντιγραφής έχει μελετηθεί περισσότερο στα προκαρυωτικα κύτταρα?

A

Ομηχανισμός της αντιγραφής έχει μελετηθεί πολύ περισσότερο στα προκαρυωτικά κύτταρα, και κυρίως στο βακτήριοEscherichia coli, γιατί το DNA τους είναι πολύ μικρότερο και απλούστερα οργανωμένο από το DNA των ευκαρυωτικών κυττάρων. Όμως τα βασικά στάδια του μηχανισμού της αντιγραφής παρουσιάζουν σημαντικές ομοιότητες και στα δύο είδη κυττάρων.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Ποιες ονομάζονται θέσεις έναρξης αντιγραφής του DNA και πόσες υπάρχουν στα προκαρυωτικα και ευκαρυωτικά κύτταρα?

A

Ηαντιγραφή του DNA αρχίζει από καθορισμένα σημεία, που ονομάζονταιθέσεις έναρξης της αντιγραφής.
Το βακτηριακό DNA, που είναι κυκλικό, έχει μία μόνο θέση έναρξης της αντιγραφής και αντιγράφεται κάτω από ευνοϊκές συνθήκες σε λιγότερο από 30 λεπτά.
Στα ευκαρυωτικά κύτταρα, πριν την αντιγραφή, το DNA καθε χρωμοσώματος είναι ένα μακρύ γραμμικό μόριο, το οποίο έχει πολυάριθμες θέσεις έναρξης της αντιγραφής. Έτσι το DNA των ευκαρυωτικών κυττάρων αντιγράφεται ταυτόχρονα από εκατοντάδες σημεία σε όλο το μήκος του και στη συνέχεια τα τμήματα που δημιουργούνται ενώνονται μεταξύ τους. Με αυτό τον τρόπο το DNA των ανώτερων ευκαρυωτικών οργανισμών, παρ’ ότι είναι περίπου 1.000 φορές μεγαλύτερο από των προκαρυωτικών, αντιγράφεται πολύ γρήγορα.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Ποιο ένζυμο είναι απαραίτητο για να αρχίσει η αντιγραφή του DNA?

A

Γιανα αρχίσει η αντιγραφή του DNA, είναι απαραίτητο να ξετυλιχθούν στις θέσεις έναρξης της αντιγραφής οι δύο αλυσίδες. Αυτό επιτυγχάνεται με τη βοήθεια ειδικών ενζύμων, που σπάζουν τους δεσμούς υδρογόνου μεταξύ των δύο αλυσίδων. Τα ένζυμα αυτά ονομάζονταιDNA ελικάσες. Όταν ανοίξει η διπλή έλικα, δημιουργείται μια «θηλιά», η οποία αυξάνεται και προς τις δύο κατευθύνσεις. Οι θηλιές που δημιουργούνται κατά την έναρξη της αντιγραφής σε ένα μόριο DNA είναι ορατές με το ηλεκτρονικό μικροσκόπιο.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Ποιος αντικαθιστά την DNA πολυμεραση στην έναρξη της αντιγραφής του DNA?

A

Τακύρια ένζυμα που συμμετέχουν στην αντιγραφή του DNA ονομάζονταιDNA πολυμεράσες. Επειδή τα ένζυμα αυτά δεν έχουν την ικανότητα να αρχίσουν την αντιγραφή, το κύτταρο έχει ένα ειδικό σύμπλοκο που αποτελείται από πολλά ένζυμα, τοπριμόσωμα, το οποίο συνθέτει στις θέσεις έναρξης της αντιγραφής μικρά τμήματα RNA, συμπληρωματικά προς τις μητρικές αλυσίδες, τα οποία ονομάζονταιπρωταρχικά τμήματα.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Ποιες λειτουργίες επιτελούν οι DNA πολυμερασες κατά την αντιγραφή?

A

Οι λειτουργίες που επιτελούν οι DNA πολυμερασες κατά την αντιγραφή είναι:
1) Επιμηκύνουν τα πρωταρχικά τμήματα, τοποθετώντας συμπληρωματικά δεοξυριβονουκλεοτίδια απέναντι από τις μητρικές αλυσίδες του DNA. Τα νέα μόρια DNA αρχίζουν να σχηματίζονται, καθώς δημιουργούνται δεσμοί υδρογόνου μεταξύ των συμπληρωματικών αζωτούχων βάσεων των δεοξυριβονουκλεοτιδίων. 2) Επιδιορθώνουν λάθη που συμβαίνουν κατά τη διάρκεια της αντιγραφής. Μπορούν, δηλαδή, να «βλέπουν» και να απομακρύνουν νουκλεοτίδιο που οι ίδιες τοποθετούν, κατά παράβαση του κανόνα της συμπληρωματικότητας, και να τοποθετούν τα σωστά.
3) Απομακρύνουν τα πρωταρχικά τμήματα RNA και τα αντικαθιστούν με τμήματα DNA.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Πώς κατασκευάζουν οι DNA πολυμερασες τις νεοαναπτυσσομενες αλυσίδες?

A

Οι DNA πολυμεράσες λειτουργούν μόνο προς καθορισμένη κατεύθυνση και τοποθετούν τα νουκλεοτίδια στο ελεύθερο 3’ άκρο της δεοξυριβόζης του τελευταίου νουκλεοτιδίου κάθε αναπτυσσόμενης αλυσίδας. Έτσι, λέμε ότι αντιγραφή γίνεται με προσανατολισμό 5’ προς 3’. Κάθε νεοσυντιθέμενη αλυσίδα θα έχει προσανατολισμό 5’→3’. Έτσι, σε κάθε διπλή έλικα που παράγεται οι δύο αλυσίδες θα είναι αντιπαράλληλες. Για να ακολουθηθεί αυτός ο κανόνας σε κάθε τμήμα DNA που γίνεται η αντιγραφή, η σύνθεση του DNA είναι συνεχής στη μια αλυσίδα και ασυνεχής στην άλλη.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Ονομαστικά τα ένζυμα που παίρνουν μέρος στην επιδιόρθωση των νουκλεοτιδίων κατά την αντιγραφή

A

DNA πολυμεραση
Επιδιορθωτικα ενζυμα

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Ποιος ο ρόλος του DNA ενός οργανισμού?

A

To DNA ενός οργανισμού είναι ο μοριακός «σκληρός δίσκος» που περιέχει αποθηκευμένες ακριβείς οδηγίες, οι οποίες καθορίζουν τη δομή και τη λειτουργία του οργανισμού. Ταυτόχρονα περιέχει την πληροφορία για τον αυτοδιπλασιασμό του, εξασφαλίζοντας έτσι τη μεταβίβαση των γενετικών οδηγιών από ένα κύτταρο στα θυγατρικά του και από έναν οργανισμό στους απογόνους του.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Να δείξετε σχηματικά το ΚΔΜΒ όπως ισχύει σήμερα

A

DNA –> <– RNA –> πρωτεΐνες ή
Νουκλεϊκά οξέα –> πρωτεΐνες

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Ποιος ο ρόλος της αντιγραφής, της μεταγραφής και της μετάφρασης?

A

Η αντιγραφή του DNA διαιωνίζει τη γενετική πληροφορία, ενώ η μετάφραση χρησιμοποιεί αυτή την πληροφορία, για να κατασκευάσει ένα πολυπεπτίδιο. Η μεταγραφή καθορίζει ποια γονίδια θα εκφραστούν, σε ποιους ιστούς (στους πολυκύτταρους ευκαρυωτικούς οργανισμούς), και σε ποια στάδια της ανάπτυξης.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Σε ποιες κατηγορίες διακρίνονται τα γονίδια με βάση το ριβονουκλεϊκο οξύ στο οποίο μεταγράφονται?

A

Όλατα κύτταρα ενός πολυκύτταρου οργανισμού έχουν το ίδιο DNA. Σε κάθε ομάδα κυττάρων όμως εκφράζονται διαφορετικά γονίδια. Στα πρόδρομα ερυθροκύτταρα, για παράδειγμα, εκφράζονται κυρίως τα γονίδια των αιμοσφαιρινών, ενώ στα Β-λεμφοκύτταρα τα γονίδια των αντισωμάτων. Τα γονίδια διακρίνονται σε δύο κατηγορίες:

Στα γονίδια που μεταγράφονται σε mRNA και μεταφράζονται στη συνέχεια σε πρωτεΐνες και

Στα γονίδια που μεταγράφονται και παράγουν tRNA, rRNA, και snRNA.

Τοαπλοειδές ανθρώπινο γονιδίωμα έχει μήκος 3x109 ζεύγη βάσεων. Από αυτό, μικρό ποσοστό μεταγράφεται σε RNA, δηλαδή αποτελεί τα γονίδια.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Ποια είδη RNA υπάρχουν σε ένα προκαρυωτικο και ένα ευκαρυωτικο κύτταρο?

A

Υπάρχουντέσσερα είδη μορίων RNA που παράγονται με τη μεταγραφή: τοαγγελιαφόρο RNA(mRNA), τομεταφορικό RNA(tRNA), τοριβοσωμικό RNA(rRNA) και το μικρό πυρηνικό RNA(snRNA). Τα τρία πρώτα είδηυπάρχουν και στους προκαρυωτικούς και στους ευκαρυωτικούς οργανισμούς, αλλά το τέταρτο υπάρχει μόνο στους ευκαρυωτικούς.

Αγγελιαφόρο RNA (mRNA). Τα μόρια αυτά μεταφέρουν την πληροφορία του DNA για την παραγωγή μιας πολυπεπτιδικής αλυσίδας.

Ριβοσωμικό RNA (rRNA). Τα μόρια αυτά συνδέονται με πρωτεΐνες και σχηματίζουν το ριβόσωμα, ένα «σωματίδιο» απαραίτητο για την πραγματοποίηση της πρωτεϊνοσύνθεσης.

Μεταφορικό RNA (tRNA). Κάθε μεταφορικό RNA συνδέεται με ένα συγκεκριμένο αμινοξύ και το μεταφέρει στη θέση της πρωτεϊνοσύνθεσης.

Μικρό πυρηνικό RNA (snRNA). Είναι μικρά μόρια RNA, τα οποία συνδέονται με πρωτεΐνες και σχηματίζουν μικρά ριβονουκλεοπρωτείνικά σωματίδια. Τα σωματίδια αυτά καταλύουν την «ωρίμανση» του mRNA, μια διαδικασία που, όπως θα αναφερθεί παρακάτω, γίνεται μόνο στους ευκαρυωτικούς οργανισμούς.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Ποια ονομάζονται ρυθμιστικά στοιχεία της μεταγραφής?

A

Ο μηχανισμός της μεταγραφής είναι ο ίδιος στους προκαρυωτικούς και ευκαρυωτικούς οργανισμούς. Η μεταγραφή καταλύεται από ένα ένζυμο, την RNA πολυμεράση (στους ευκαρυωτικούς οργανισμούς υπάρχουν τρία είδη RNA πολυμερασών).
Η RNA πολυμεράση προσδένεται σε ειδικές περιοχές του DNA, που ονομάζονται υποκινητές, με τη βοήθεια πρωτεϊνών που ονομάζονται μεταγραφικοί παράγοντες. Οι υποκινητές και οι μεταγραφικοί παράγοντες αποτελούν τα ρυθμιστικά στοιχεία της μεταγραφής του DNA και επιτρέπουν στην RNA πολυμεράση να αρχίσει σωστά τη μεταγραφή. Οι υποκινητές βρίσκονται πάντοτε πριν από την αρχή κάθε γονιδίου.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Ποια η διαδικασία της μεταγραφής?

A

Κατά την έναρξη της μεταγραφής ενός γονιδίου η RNA πολυμεράση προσδένεται στον υποκινητή και προκαλεί τοπικό ξετύλιγμα της διπλής έλικας του DNA. Στη συνέχεια, τοποθετεί τα ριβονουκλεοτίδια απέναντι από τα δεοξυριβονουκλεοτίδια μίας αλυσίδας του DNA σύμφωνα με τον κανόνα της συμπληρωματικότητας των βάσεων, όπως και στην αντιγραφή, με τη διαφορά ότι εδώ απέναντι από την αδενίνη τοποθετείται το ριβονουκλεοτίδιο που περιέχει ουρακίλη. Η RNA πολυμεράση συνδέει τα ριβονουκλεοτίδια που προστίθενται το ένα μετά το άλλο, με 3’-5’φωσφοδιεστερικό δεσμό. Η μεταγραφή έχει προσανατολισμό 5’→3’ όπως και η αντιγραφή (Εικόνα 2.4). Η σύνθεση του RNA σταματά στο τέλος του γονιδίου, όπου ειδικές αλληλουχίες οι οποίες ονομάζονται αλληλουχίες ληξης της μεταγραφής, επιτρέπουν την απελευθέρωσή του.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Τι συμβαίνει στη μετάφραση στους προκαρυωτικους οργανισμούς?

A

Στους προκαρυωτικούς οργανισμούς το mRNA αρχίζει να μεταφράζεται σε πρωτεΐνη πριν ακόμη ολοκληρωθεί η μεταγραφή του. Αυτό είναι δυνατό, επειδή δεν υπάρχει πυρηνική μεμβράνη.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Ποια είναι η μεταγραφόμενη αλυσίδα?

A

Το μόριο RNA που συντίθεται είναι συμπληρωματικό προς τη μία αλυσίδα της διπλής έλικας του DNA του γονιδίου. Η αλυσίδα αυτή είναι η μεταγραφόμενη και ονομάζεται μη κωδική. Η συμπληρωματική αλυσίδα του DNA του γονιδίου ονομάζεται κωδική. To RNA είναι το κινητό αντίγραφο της πληροφορίας ενός γονιδίου.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Ποια γονίδια ονομάζονται ασυνεχή και που τα συναντάμε?

A

Η διαδικασία της ωρίμανσης του mRNA αποτελεί ένα από τα πιο ενδιαφέροντα ευρήματα της Μοριακής Βιολογίας, γιατί οδήγησε στο συμπέρασμα ότι τα περισσότερα γονίδια των ευκαρυωτικών οργανισμών (και των ιών που τους προσβάλλουν) είναιασυνεχή ή διακεκομμένα. Δηλαδή, η αλληλουχία που μεταφράζεται σε αμινοξέα διακόπτεται από ενδιάμεσες αλληλουχίες οι οποίες δε μεταφράζονται σε αμινοξέα. Οι αλληλουχίες που μεταφράζονται σε αμινοξέα ονομάζονται εξωνια και οι ενδιάμεσες αλληλουχίες ονομάζονται εσωνια

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Τι ονομάζουμε εσωνια και εξωνια?

A

Οι αλληλουχίες που μεταφράζονται σε αμινοξέα ονομάζονται εξώνια και οι ενδιάμεσες αλληλουχίες ονομάζονται εσώνια.

21
Q

Που συμβαίνει η ωρίμανση και ποιοί παράγοντες συμμετέχουν?

A

Ότανένα γονίδιο που περιέχει εσώνια μεταγράφεται, δημιουργείται το πρόδρομο mRNA που περιέχει και εξώνια και εσώνια. Τοπρόδρομο mRNAμετατρέπεται σε mRNA με τη διαδικασία της ωρίμανσης, κατά την οποία τα εσώνια κόβονται από μικρά ριβονουκλεοπρωτεϊνικά «σωματίδια» και απομακρύνονται. Τα ριβονουκλεοπρωτεϊνικά σωματίδια αποτελούνται από snRNA και από πρωτεΐνες και λειτουργούν ως ένζυμα: κόβουν τα εσώνια και συρράπτουν τα εξώνια μεταξύ τους. Έτσι σχηματίζεται το«ώριμο» mRNA.

22
Q

Από ποιες περιοχές αποτελείται το ώριμο mRNA?

A

Παρ’ ότι το ώριμο mRNA αποτελείται αποκλειστικά από εξώνια, έχει δύο περιοχές που δε μεταφράζονται σε αμινοξέα. Η μία βρίσκεται στο 5’ άκρο και η άλλη στο 3’ άκρο. Οι αλληλουχίες αυτές ονομάζονται 5’ και 3’ αμετάφραστες περιοχές, αντίστοιχα. To mRNA μεταφέρεται από τον πυρήνα στο κυπαρόπλασμα και ειδικότερα στα ριβοσώματα όπου είναι η θέση της πρωτεϊνοσύνθεσης

23
Q

Ορισμός γενετικού κώδικα

A

Με τη μεταγραφή, οι πληροφορίες που βρίσκονται στα γονίδια μεταφέρονται στο mRNA με βάση τη συμπληρωματικότητα των νουκλεοτιδικών βάσεων. Η αλληλουχία των βάσεων του mRNA καθορίζει την αλληλουχία των αμινοξέων στις πρωτεΐνες με βάση εναν κώδικα αντιστοίχισης νουκλεοτιδίων mRNA με αμινοξέα πρωτεϊνών, ο οποίος ονομάζεταιγενετικός κώδικας.

24
Q

Πώς ανακαλύφθηκε ότι ο γενετικός κώδικας είναι κώδικας τριπλέτας?

A

Επειδήο αριθμός των διαφορετικών αμινοξέων που συγκροτούν τις πρωτεΐνες είναι είκοσι και, αντίστοιχα, ο αριθμός των διαφορετικών νουκλεοτιδίων που συγκροτούν το RNA είναι τέσσερα, θεωρήθηκε πιθανό ότι τρία νουκλεοτίδια αντιστοιχούν σε ένα αμινοξύ και γι’ αυτό ο γενετικός κώδικας ονομάστηκε κώδικας τριπλέτας. Ο κώδικας τριπλέτας είναι φυσική συνέπεια του γεγονότος ότι τέσσερα νουκλεοτίδια, αν συνδυαστούν ανά ένα (41=4) ή ανά δύο (42= 16), δε δίνουν αρκετούς συνδυασμούς για να κωδικοποιηθούν τα είκοσι αμινοξέα. Αν όμως συνδυαστούν ανά τρία (43=64) οι συνδυασμοί είναι παραπάνω από αρκετοί.

25
Q

Ποια τα βασικά χαρακτηριστικά του γενετικού κώδικα?

A

Τα βασικά χαρακτηριστικά του γενετικού κώδικα είναι:

1) Ο γενετικός κώδικας είναι κώδικας τριπλέτας, δηλαδή μια τριάδα νουκλεοτιδίων, το κωδικόνιο, κωδικοποιεί ένα αμινοξύ.
2) Ο γενετικός κώδικας είναι συνεχής, δηλαδή το mRNA διαβάζεται συνεχώς ανά τρία νουκλεοτίδια χωρίς να παραλείπεται κάποιο νουκλεοτίδιο.
3) Ο γενετικός κώδικας είναι μη επικαλυπτόμενος, δηλαδή κάθε νουκλεοτίδιο ανήκει σε ένα μόνο κωδικόνιο.
4) Ο γενετικός κώδικας είναι σχεδόν καθολικός. Όλοι οι οργανισμοί έχουν τον ίδιο γενετικό κώδικα. Αυτό πρακτικά σημαίνει ότι το mRNA από οποιονδήποτε οργανισμό μπορεί να μεταφραστεί σε εκχυλίσματα φυτικών, ζωικών ή βακτηριακών κυττάρων in vitro και να παραγάγει την ίδια πρωτεΐνη.
5) Ο γενετικός κώδικας χαρακτηρίζεται ως εκφυλισμένος. Με εξαίρεση δύο αμινοξέα (μεθειονίνη και τρυπτοφάνη) τα υπόλοιπα 18 κωδικοποιούνται από δύο μέχρι και έξι διαφορετικά κωδικόνια. Τα κωδικόνια που κωδικοποιούν το ίδιο αμινοξύ ονομάζονται συνώνυμα.
6) Ο γενετικός κώδικας έχει κωδικόνιο έναρξης και κωδικόνια λήξης. Το κωδικόνιο έναρξης σε όλους τους οργανισμούς είναι το AUG και κωδικοποιεί το αμινοξύ μεθειονίνη. Υπάρχουν τρία κωδικόνια λήξης, τα UAG, UGA και UAA. Η παρουσία των κωδικονίων αυτών στο μόριο του mRNA οδηγεί στον τερματισμό της σύνθεσης της πολυπεπτιδικής αλυσίδας.

26
Q

Που γίνεται η μετάφραση και τι χρειάζεται για να γίνει?

A

Η μετάφραση του mRNA, δηλαδή η αντιστοίχιση των κωδικονίων σε αμινοξέα και η διαδοχική σύνδεση των αμινοξέων σε πολυπεπτιδική αλυσίδα, πραγματοποιείται στα ριβοσώματα με τη βοήθεια των tRNA και τη συμμετοχή αρκετών πρωτεϊνών και ενέργειας. Τα ριβοσώματα μπορούν να χρησιμοποιηθούν ως θέση μετάφρασης για οποιοδήποτε mRNA. Αυτό εξηγεί γιατί τα βακτήρια μπορούν να χρησιμοποιηθούν σαν «εργοστάσια παραγωγής ανθρώπινων πρωτεϊνών».

27
Q

Ποια η δομή του ριβοσωματος?

A

Κάθεριβόσωμα αποτελείται από δύο υπομονάδες, μια μικρή και μια μεγάλη, και έχει μία θέση πρόσδεσης του mRNA στη μικρή υπομονάδα και δύο θέσεις εισδοχής των tRNA στη μεγάλη υπομονάδα. Κάθε μόριο tRNA έχει μια ειδική τριπλετα νουκλεοτιδίων, τοαντικωδικόνιο, με την οποία προσδένεται, λόγω συμπληρωματικότητας, με το αντίστοιχο κωδικόνιο του mRNA. Επιπλέον, κάθε μόριο tRNA διαθέτει μια ειδική θέση σύνδεσης με ένα συγκεκριμένο αμινοξύ.

28
Q

Να περιγράψετε τη δομή του tRNA

A

Κάθε μόριο tRNA έχει μια ειδική τριπλετα νουκλεοτιδίων, τοαντικωδικόνιο, με την οποία προσδένεται, λόγω συμπληρωματικότητας, με το αντίστοιχο κωδικόνιο του mRNA. Επιπλέον, κάθε μόριο tRNA διαθέτει μια ειδική θέση σύνδεσης με ένα συγκεκριμένο αμινοξύ.

29
Q

Τι συμβαίνει κατά την έναρξη της μετάφρασης?

A

Κατά την έναρξη της μετάφρασης το mRNA προσδένεται, μέσω μιας αλληλουχίας που υπάρχει στην 5’ αμετάφραση περιοχή του, με το ριβοσωμικό RNA της μικρής υπομονάδας του ριβοσώματος, σύμφωνα με τους κανόνες της συμπληρωματικότητας των βάσεων. Το πρώτο κωδικόνιο του mRNA είναι πάντοτε AUG και σ’ αυτό προσδένεται το tRNA που φέρει το αμινοξύ μεθειονίνη. Στη συνέχεια η μεγάλη υπομονάδα του ριβοσώματος συνδέεται με τη μικρή.

30
Q

Είναι η μεθειονίνη το πρώτο αμινοξύ των πρωτεϊνών?

A

Δεν έχουν όλες οι πρωτεΐνες του οργανισμού ως πρώτο αμινοξύ μεθειονίνη. Αυτό συμβαίνει γιατί, σε πολλές πρωτεΐνες, μετά τη σύνθεσή τους απομακρύνονται ορισμένα αμινοξέα από το αρχικό αμινικό άκρο τους.

31
Q

Τι είναι το σύμπλοκο έναρξης της πρωτεϊνοσύνθεσης?

A

Το σύμπλοκο που δημιουργείται μετά την πρόσδεση του mRNA στη μικρή υπομονάδα του ριβοσώματος και του tRNA που μεταφέρει τη μεθειονίνη ονομάζεται σύμπλοκο έναρξης της πρωτεϊνοσύνθεσης.

32
Q

Πώς εισέρχεται το δεύτερο αμινοξύ στο ριβόσωμα?

A

Κατά την επιμήκυνση ένα δεύτερο μόριο tRNA με αντικωδικόνιο συμπληρωματικό του δεύτερου κωδικονίου του mRNA τοποθετείται στην κατάλληλη εισδοχή του ριβοσώματος, μεταφέροντας το δεύτερο αμινοξύ. Μεταξύ της μεθειονίνης και του δεύτερου αμινοξέος σχηματίζεται πεπτιδικός δεσμός και αμέσως μετά, το πρώτο tRNA αποσυνδέεται από το ριβόσωμα και απελευθερώνεται στο κυτταρόπλασμα όπου συνδέεται πάλι με μεθειονίνη, έτοιμο για επόμενη χρήση. Το ριβόσωμα και το mRNA έχουν τώρα ένα tRNA, πάνω στο οποίο είναι προσδεμένα δύο αμινοξέα. Έτσι αρχίζει η επιμήκυνση της πολυπεπτιδικής αλυσίδας.

33
Q

Ποια η πορεία του ριβοσωματος κατά μήκος του mRNA?

A

Το ριβόσωμα κινείται κατά μήκος του mRNA κατά ένα κωδικόνιο. Ένα τρίτο tRNA έρχεται να προσδεθεί μεταφέροντας το αμινοξύ του. Ανάμεσα στο δεύτερο και στο τρίτο αμινοξύ σχηματίζεται πεπτιδικός δεσμός. Η πολυπεπτιδική αλυσίδα συνεχίζει να αναπτύσ- σεται καθώς νέα tRNA μεταφέρουν αμινοξέα τα οποία συνδέονται μεταξύ τους

34
Q

Πώς σταματά η πρωτεϊνοσύνθεση?

A

Η επιμήκυνση σταματά σε ένα κωδικόνιο λήξης (UGA, UAG ή UAA), επειδή δεν υπάρχουν tRNA που να αντιστοιχούν σε αυτά. Το τελευταίο tRNA απομακρύνεται από το ριβόσωμα και η πολυπεπτιδική αλυσίδα απελευθερώνεται.

35
Q

Γιατί η πρωτεϊνοσύνθεση χαρακτηρίζεται ως οικονομική διαδικασία?

A

Ένα κύτταρο μπορεί να παραγάγει μεγάλα ποσά μιας πρωτείνης από ένα ή από δύο αντίγραφα ενός γονιδίου. Πολλά μόρια mRNA μπορούν να μεταγράφονται από ένα μόνο γονίδιο. Πολλά ριβοσώματα μπορούν να μεταφράζουν ταυτόχρονα ένα mRNA, το καθένα σε διαφορετικό σημείο κατά μήκος του μορίου. Αμέσως μόλις το ριβόσωμα έχει μεταφράσει τα πρώτα κωδικόνια, η θέση έναρξης του mRNA είναι ελεύθερη για την πρόσδεση ενός άλλου ριβοσώματος. Το σύμπλεγμα των ριβοσωμάτων με mRNA ονομάζεταιπολύσωμα(Εικόνα 2.12). Έτσι, η πρωτεϊνοσύνθεση είναι μια «οικονομική διαδικασία».

36
Q

Γιατί είναι απαραίτητο το πρόγραμμα γονιδιακής ρύθμισης στα κύτταρα?

A

Σε κάθε κύτταρο δεν παράγονται όλες οι πρωτεΐνες σε κάθε χρονική στιγμή. Επιπλέον, επειδή το κύτταρο χρειάζεται κάθε πρωτεΐνη σε συγκεκριμένη ποσότητα, οι πρωτεΐνες ενός κυττάρου δεν παράγονται σε ίσες ποσότητες. Αν λοιπόν όλα τα γονίδια δούλευαν με τον ίδιο ρυθμό, ορισμένες πρωτεΐνες θα παράγονταν σε μεγάλες ποσότητες και άλλες σε ποσότητες που δε θα επαρκούσαν. Έτσι, είναι απαραίτητη η ύπαρξη και η λειτουργία ενός προγράμματος ρύθμισης της γονίδιακής έκφρασης, που παρέχει τις οδηγίες για το είδος και την ποσότητα των πρωτεϊνών οι οποίες πρέπει να παραχθούν σε κάθε συγκεκριμένη χρονική στιγμή.

37
Q

Ορισμός γονιδιακής έκφρασης

A

Οόρος γονιδιακή έκφραση αναφέρεται συνήθως σε όλη τη διαδικασία με την οποία ένα γονίδιο ενεργοποιείται, για να παραγάγει μια πρωτεΐνη.

38
Q

Που αποσκοπεί η ρύθμιση γονιδιακής έκφρασης στα βακτήρια?

A

Σταβακτήρια η ρύθμιση της γονιδιακής έκφρασης αποσκοπεί κυρίως στην προσαρμογή του οργανισμού στις εναλλαγές του περιβάλλοντος, έτσι ώστε να εξασφαλίζονται οι καλύτερες συνθήκες για τη βασική λειτουργία του που είναι η αύξηση και η διαίρεση.

39
Q

Πόσα γονίδια έχει η E coli? Μεταγράφονται και μεταφράζονται συνεχώς? Δώστε ένα παράδειγμα.

A

Έναβακτηριακό κύτταρο Ε. coli έχει περισσότερα από 4000 γονίδια. Μερικά γονίδια μεταγράφονται συνεχώς και κωδικοποιούν πρωτεΐνες, που χρειάζονται για τις βασικές λειτουργίες του κυττάρου. Άλλα γονίδια μεταγράφονται μόνο όταν το κύτταρο αναπτύσσεται σε ειδικές περιβαλλοντικές συνθήκες, επειδή τα προϊόντα των γονιδίων αυτών είναι απαραίτητα για την επιβίωση του κυττάρου στις συνθήκες αυτές. Ένα παράδειγμα είναι το εξής: τα βακτήρια Ε. coli χρησιμοποιούν ως πηγή άνθρακα το σάκχαρο γλυκόζη. Γεννιέται λοιπόν το ερώτημα: αν στο περιβάλλον αντί για γλυκόζη υπάρχει ο δισακχαρίτης λακτόζη, το βακτήριο έχει τη δυνατότητα να τον διασπάσει για να επιβιώσει ή θα πεθάνει, μολονότι γύρω του υπάρχει άφθονη τροφή; Το βακτήριο λύνει το πρόβλημα αυτό ρυθμίζοντας την παραγωγή των κατάλληλων ενζύμων, που θα διασπάσουν πι λακτόζη σε γλυκόζη και γαλακτόζη.

40
Q

Από ποιους επιστήμονες έγιναν οι αρχικές μελέτες της ρύθμισης των γονιών στα βακτήρια?

A

Οι αρχικές μελέτες της ρύθμισης των γονιδίων έγιναν από τους Jacob και Monod, το 1961. Οι ερευνητές περιέγραψαν την ικανότητα του βακτηρίου Ε. coli να παραγάγει τα τρία απαραίτητα ένζυμα που χρειάζεται για να μεταβολίσει το δισακχαρίτη λακτόζη, όταν δεν υπάρχει γλυκόζη στην τροφή του. Οι Jacob και Monod απέδειξαν με γενετικές μελέτες ότι τα γονίδια που κωδικοποιούν τα τρία αυτά ένζυμα βρίσκονται το ένα δίπλα στο άλλο πάνω στο γονιδίωμα του βακτηρίου και αποτελούν μια μονάδα, που την ονόμασαν οπερόνιο της λακτόζης.

41
Q

Από ποιες περιοχές αποτελείται το οπερονιο της λακτόζης?

A

Σεαυτό περιλαμβάνονται εκτός από αυτά τα γονίδια, που ονομάζονταιδομικά, και αλληλουχίες DNA που ρυθμίζουν τη μεταγραφή τους. Οι αλληλουχίες αυτές που βρίσκονται μπροστά από τα δομικά γονίδια είναι κατά σειρά έναρυθμιστικό γονίδιο, ουποκινητήςκαι οχειριστής.

42
Q

Πώς επιτυγχάνεται η καταστολή του οπερονιου της λακτόζης?

A

Το οπερόνιο της λακτόζης δε μεταγράφεται ούτε μεταφράζεται, όταν απουσιάζει από το θρεπτικό υλικό η λακτόζη. Τότε λέμε ότι τα γονίδια που το αποτελούν βρίσκονται υπό καταστολή. Πώς επιτυγχάνεται η καταστολή; Δύο είναι τα ρυθμιστικά μόρια: μια αλληλουχία DNA, που ονομάζεται χειριστής και βρίσκεται μεταξύ του υποκινητή και του πρώτου γονιδίου, και μια ρυθμιστική πρωτεΐνη-καταστολέας. Όταν απουσιάζει η λακτόζη ο καταστολέας προσδένεται ισχυρά στο χειριστή και εμποδίζει την RNA πολυμεράση να αρχίσει τη μεταγραφή των γονιδίων του οπερονίου. Ο καταστολέας κωδικοποιείται από ένα ρυθμιστικό γονίδιο, που βρίσκεται μπροστά από τον υποκινητή. Το ρυθμιστικό γονίδιο μεταγράφεται συνεχώς και παράγει λίγα μόρια του καταστολέα. Τα μόρια αυτά προσδένονται συνεχώς στο χειριστή.

43
Q

Ορισμός κυτταρικής διαφοροποίησης

A

Η ζωή αρχίζει, όταν ένα γονιμοποιημένο ωάριο διαιρείται με μίτωση και παράγει τρισεκατομμύρια κύτταρα, που έχουν τα ίδια γονίδια. Στα αρχικά στάδια της εμβρυογένεσης τα κύτταρα εξειδικεύονται, για να εκτελέσουν επιμέρους λειτουργίες και η διαδικασία αυτή ονομάζεται κυτταρική διαφοροποίηση.

44
Q

Γιατί χρειάζεται η ρύθμιση της γονιδιακής έκφρασης στους ευκαρυωτικούς οργανισμούς?

A

Τα κύτταρα ενός πολύπλοκου πολυκύτταρου οργανισμού, όπως τα νευρικά, τα μυϊκά, τα ηπατικά, διαφέρουν στη μορφή και στη λειτουργία τους, αλλά έχουν όλα το ίδιο γενετικό υλικό, άρα και τα ίδια γονίδια. Μολονότι όλα τα κύτταρα έχουν τις ίδιες γενετικές οδηγίες, έχουν αναπτύξει μηχανισμούς που τους επιτρέπουν να εκφράζουν τη γενετική τους πληροφορία επιλεκτικά και να ακολουθούν μόνο τις οδηγίες που χρειάζονται κάθε χρονική στιγμή. Κάθε κυτταρικός τύπος έχει εξειδικευμένη λειτουργία και πρέπει να υπάρχει πλήρης συντονισμός των λειτουργιών όλων των κυττάρων. Γι’ αυτό, η τελειοποίηση των συστημάτων ελέγχου είναι αναγκαία και λόγω της μεγαλύτερης πολυπλοκότητας των ευκαρυωτικών κυττάρων, αλλά και επειδή πρέπει να ελεγχθεί προσεκτικά η ανάπτυξη των πολυκύτταρων οργανισμών. Κατά συνέπεια, η ρύθμιση των γονιδίων στα ευκαρυωτικά κύτταρα γίνεται σε πολλά επίπεδα.

45
Q

Τι συμβαίνει όταν οι μηχανισμοί έκφρασης των γονιδίων στα ευκαρυωτικά κύτταρα απορρυθμίζονται?

A

Η ρύθμιση της έκφρασης των γονιδίων στα ευκαρυωτικά κύτταρα γίνεται με ιδιαίτερα πολύπλοκους μηχανισμούς και αποτελεί σήμερα αντικείμενο εντατικής ερευνητικής μελέτης. Η πλήρης διαλεύκανση των μηχανισμών αυτών θα δώσει απαντήσεις για το πώς, όταν οι μηχανισμοί αυτοί απορρυθμίζονται, τα κύτταρα «βγαίνουν» από το αυστηρό πρόγραμμα της λειτουργίας τους και γίνονται καρκινικά.

46
Q

Σε ποια επίπεδα ρυθμίζεται η γονιδιακή έκφραση στους ευκαρυωτικούς οργανισμούς?

A

Σταευκαρυωτικά κύτταρα η γονιδιακή έκφραση ρυθμίζεται σε τέσσερα επίπεδα:

Στο επίπεδο της μεταγραφής. Ένας αριθμός μηχανισμών ελέγχουν ποια γονίδια θα μεταγραφούν ή/και με ποια ταχύτητα θα γίνει η μεταγραφή. To DNA των ευκαρυωτικών κυττάρων δεν οργανώνεται σε οπερόνια αλλά κάθε γονίδιο έχει το δικό του υποκινητή και μεταγράφεται αυτόνομα.
Η RNA πολυμεράση λειτουργεί (όπως και στους προκαρυωτικούς οργανισμούς) με τη βοήθεια πρωτεϊνών, που ονομάζονται μεταγραφικοί παράγοντες. Μόνο που στους ευκαρυωτικούς οργανισμούς οι μεταγραφικοί παράγοντες παρουσιάζουν τεράστια ποικιλία. Κάθε κυτταρικός τύπος περιέχει διαφορετικά είδη μεταγραφικών παραγόντων. Διαφορετικός συνδυασμός μεταγραφικών παραγόντων ρυθμίζει τη μεταγραφή κάθε γονιδίου. Μόνο όταν ο σωστός συνδυασμός των μεταγραφικών παραγόντων προσδεθεί στον υποκινητή ενός γονιδίου, αρχίζει η RNA πολυμεράση τη μεταγραφή ενός γονιδίου.

Στο επίπεδο μετά τη μεταγραφή. Περιλαμβάνονται οι μηχανισμοί με τους οποίους γίνεται η ωρίμανση του πρόδρομου mRNA και καθορίζεται η ταχύτητα με την οποία το ώριμο mRNA αφήνει τον πυρήνα και εισέρχεται στο κυτταρόπλασμα.

Στο επίπεδο της μετάφρασης. Ο χρόνος που «ζουν» τα μόρια mRNA στο κυτταρόπλασμα δεν είναι ο ίδιος για όλα τα είδη RNA, επειδή μετά από κάποιο χρονικό διάστημα αποικοδομούνται. Επίσης, ποικίλλει και η ικανότητα πρόσδεσης του mRNA στα ριβοσώματα.

Στο επίπεδο μετά τη μετάφραση. Ακόμη και όταν γίνει η πρωτεϊνοσύνθεση και παραχθεί η κατάλληλη πρωτεΐνη, μπορεί να πρέπει να υποστεί τροποποιήσεις, για να γίνει βιολογικά λειτουργική

47
Q

Πώς ενεργοποιείται το οπερονιο της λακτοζης?

A

Όταν στο θρεπτικό υλικό υπάρχει μόνο λακτόζη, τότε ο ίδιος ο δισακχαρίτης προσδένεται στον καταστολέα και δεν του επιτρέπει να προσδεθεί στο χειριστή. Τότε η RNA πολυμεράση είναι ελεύθερη να αρχίσει τη μεταγραφή. Δηλαδή η λακτόζη λειτουργεί ως επαγωγέας της μεταγραφής των γονιδίων του οπερονίου. Τότε τα γονίδια αρχίζουν να «εκφράζονται», δηλαδή να μεταγράφονται και να συνθέτουν τα ένζυμα. Τα τρία ένζυμα μεταφράζονται ταυ- τόχρονα από το ίδιο μόριο mRNA το οποίο περιέχει κωδικόνιο έναρξης και λήξης για κάθε ένζυμο (Εικόνα 2.13β). Συμπερασματικά, η ίδια η λακτόζη ενεργοποιεί τη διαδικασία για την αποικοδόμησή της. Όταν η λακτόζη διασπαστεί πλήρως, τότε η πρωτείνη καταστολέας είναι ελεύθερη να προσδεθεί στο χειριστή και να καταστείλει τη λειτουργία των τριών γονιδίων.

48
Q

Ορισμός οπερονιου

A

Στο γονιδίωμα των προκαρυωτικών οργανισμών τα γονίδια των ενζύμων που παίρνουν μέρος σε μια μεταβολική οδό, όπως η διάσπαση της λακτόζης ή η βιοσύνθεση διάφορων αμινοξέων, οργανώνονται σε οπερόνια, δηλαδή σε ομάδες που υπόκεινται σε κοινό έλεγχο της έκφρασής τους.