1st lecture Flashcards

1
Q

Probability Distribution

A

tells us the probabilities of observing different values within a population

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

pdf

A

the probability density function is the function displaying the probability distribution

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Discrete RV

A

can take on only certain specific values

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Continuous RV

A

can take any value

the probability that a continuous RV will take on a specific value is always zero

probabilities for continuous values are described by pdf’s

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Measures of Central Tendency

A

median
mean
mode

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Variance

A

measures the dispersion of a probability distribution

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Range

A

difference between the largest and smallest of the observed data points

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Interquartile range

A

difference between the 75th and 25th percentile

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Covariance & Correlation

A

Covariance shows the direction in which both variables move;
Correlation shows the direction AND the strength in which two different variables move

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Cov(x,y) = 0

A

both variables are independent from each other

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

E[X x Y] = …

A

E[X] x E[Y] + cov(X,Y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Var(Zahl)=

A

0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Var(cY+d) = …

A

c²Var(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Var(cX+dY) = …

A

c²Var(X) + d²Var(Y) +2cdCov(X,Y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Cov(x+y , z) = …

A

cov(x,z) + cov(y,z)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What is the meaning of “unimodal”?

A

Only one peak in the distribution

17
Q

Standard normally distributed variable:

A

Z = (y-mean) / stdev

18
Q

Cumulative distribution function

A

The probability that a continuous RV lies above or below a certain value

19
Q

X²- distribution

A

sum of squares of n independent standard normal distributions wit h degrees of freedom

20
Q

Degrees of freedom - …

A

Number of independent values that can vary in an analysis without breaking any constraints (observations - parameters)

21
Q

F - distribution: F(n1,n2)

A

the ratio of two independent X² distributions divided by their respective degrees of freedom n1 and n2

22
Q

CLT - central limit theorem:

A

allows us to make inferences about a whole population using sample data, regardless of the population’s original distribution.
Taking many samples of a population and calculating their means will result in a normal sample mean distribution, although the original distribution wasn’t normally distributed.

23
Q

What does a regression do?

A

it describes and evaluates the empirical relationship between dependent and independent variables using a sample of data