1.4 Sketching Graphs of Functions Flashcards
Function Notation
f(x) = af[k(x-p)]+q
Mapping Notation
(1/k x+p, ay+q)
Parabola
f(x) = a[k(x-p)]2 +q
Reciprocal
f(x) = a (1/k[x-p]) +q
Root
f(x) = a√l[k-p] +q
Absolute Value
f(x)=a(k|x-p|) +q
What is ‘a’?
Vertical stretch/compression
Vertical stretch if…
a>1 OR a<-1
Vertical compression if…
-1<a<1
Vertical reflection if…
a<0
- reflection over the x-axis
What is ‘k’?
Horizontal stretch/compression
Horizontal compression if…
k>1 OR k<-1
Horizontal stretch if…
-1<k<1
Horizontal reflection if…
k<0
- reflection over the y-axis
What is ‘p’?
Horizontal translation
Graph shifts right if…
p>0
Graph shifts left if…
p<0
What is ‘q’?
Vertical translation
Graph shifts up if…
q>0
Graph shifts down if…
q<0
P value represents?
- The vertical asymptote
- Goes in domain
Q value represents?
- The horizontal asymptote
- Goes in range