FS1 Chapters 1-5 Flashcards

1
Q

How do you find E(X) for discrete random variables?

A

ΣxP(X=x)
Multiply each outcome and probability together and add

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

How do you find E(X^2) for discrete random variables?

A

Σx^2P(X=x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

How do you find Var(X) for discrete random variables?

A

E(X^2) - (E(X))^2
Mean of the squares minus square of the mean

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is E(aX + b) equal to?

A

aE(X) + b

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What is E(X+Y) equal to?

A

E(X) + E(Y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What is Var(aX + b) equal to?

A

a^2Var(X)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What are the conditions required to use the Poisson distribution?

A

-Events are independent
-Events occur singly in space or time
-Constant average rate so mean number in a period is proportional to length of period

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the combined distribution of X and Y, X~ Po(λ) and Y~ Po(μ)?

A

X+Y~ Po(λ+μ)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What is E(X) and Var(X) in the Poisson distribution?

A

E(X)= λ
Var(X)= λ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What is E(X) of a binomial distribution X~ B(n,p)?

A

E(X) = np

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What is Var(X) of a binomial distribution X~ B(n,p)?

A

Var(X) = np(1-p)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

What are the conditions needed to use a binomial distribution as an approximation for a Poisson distribution?

A

n is large
p is small
λ = np

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

What is E(X) of a distribution X~ Geo(p)?

A

E(X)= 1/p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

What is Var(X) of a distribution X~ Geo(p)?

A

Var(X)= (1-p)/p^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is E(X) of a distribution X~ NB(r,p)?

A

E(X) = r/p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What is Var(X) of a distribution X~ NB(r,p)?

A

Var(X)= r(1-p)/ p^2

17
Q

What is the central limit theorem?

A

The mean of a large random sample taken from any random distribution is always approximately normally distributed

18
Q

What is the distribution for the central limit theorem?

A

For distribution with mean μ and standard deviation σ and sample size of n ,
Xbar ~ N(μ, (σ/√n)^2)