formulas Flashcards

1
Q

strain =

A

change in length / original ength

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

stress =

A

force (perp.) / cross sectional area

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

moment of inertia for a rectangular section

A

bd^3/12

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

second moment of area

A

sum of moments of inertia (for sections) + sum of Ah^2 (for sections)
- h = distance from middle of section to (neutral) axis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

poisson’s ratio

A

lateral strain/ axial or longitudinal strain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

the neutral axes/ the centroid values

A

sum of Ay or Ax / sum of areas
- where y and x are the distance from the “reference axis”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

elastic or young’s modulus

A

stress/ strain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

condition for determinate structure (supported beams)

A

no. of reactions is greater than or equal to the no. of equilibrium equations (3 or 4 if internal pin)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

condition for determinate strucuture (trusses)

A

m + r = 2j
- m= members, r = reactions, j = nodes or joints

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

degree of redundancy

A

R - E
- R= reactions, E= no. of equilibrium equations

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

UDL

A

W = ωL
- ω= unit load, L=length of beam

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Partially distributed load

A

W = ω(x2-x1)
- ω= unit load, x2-x1= length of PDL

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

varying distributed load (including where it acts)

A

W = 1/2* ω* (x2-x1)
- ω= unit load, x2-x1= length of PDL

acting as a point load a 1/3 of the distance from the maximum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

varying partially distributed load (including where it acts)

A

splits into two point loads from a rectangle (central) and triangle (1/3 from max.)

W1(rectangle) = ω1(x2-x1)
W2(triangle) = 1/2* (ω2-ω1)*(x2-x1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

factor of safety (against overturning)

A

restoring moment / overturning moment
- RM= Weight * (1/2* dimension of component parallel to force applied)
- OM= Force* distance perp.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

factor of safety (against sliding)

A

total reactive forces resisting/ total forces tending to cause it

17
Q

moment of inertia for a circular section

A

(pi* r^4) / 4 or (pi* d^4)/64

18
Q

moment of inertia for a hollow circular section

A

(pi* (d^4 - di^4)) / 64

where d = larger diameter and di = inner, smaller diameter

19
Q

modulus of rigidity

A

shear stress/ shear strain

20
Q

relationship between E, G and v

A

E = 2G (1 + v)

21
Q

Couple(t)

A

Force* lever arm

22
Q

angular point load components

A

Fx = F sin(θ)
Fy = F cos(θ)

23
Q

centroid values for a triangle

A

y = h/3 and x = b/3

24
Q

Engineer’s theory of bending

A

M/ I = σ / y

σ = bending stress at distance y = from the neutral axis
M = moment of resistance
I = moment of inertia/ second moment of area about the neutral axis

25
Q

Elastic section modulus

A

Z = I / y

y = distance from neutral axis to “extreme fibres”
I = moment of inertia

26
Q

Moment of resistance for rectangular sections

A

(σ* b* d^2)/ 6

where σ is the maximum permissible stress
b = breadth, d = depth

27
Q

shear stress

A

shear force/ area

28
Q

tensile force (in bending structures)

A

moment / distance or lever arm